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An analysis is made of the unsteady lift exerted on a stationary rigid body immersed in an
incompressible, plane-wall turbulent boundary layer. The lift is expressed as a surface integral
over the body involving the upwash velocity induced by the &&free'' vorticity X (found by taking
explicit account of the interaction of the body with the #ow and excluding the bound vorticity)
and a harmonic function X

2
that depends only on the shape of the body. The upwash velocity is

the free-"eld velocity given in terms of X by the Biot}Savart formula, augmented by the velocity
"eld of a conventional distribution of image vortices in the wall. The function X

2
can be

interpreted as the velocity potential of #ow past the body, produced by motion of the wall at
unit speed towards the body. Detailed predictions are made of the lift on a slender airfoil placed
in the outer region of the boundary-layer. When the airfoil chord is large compared to the
boundary-layer thickness, vortex shedding into the wake causes the magnitude of the net
upwash velocity near the trailing edge to be small. The main contributions to the surface
integral are then from the nose region, where the upwash velocity may be estimated indepen-
dently of the #uctuations near the trailing edge. Analytical results for a thin plate airfoil of
chord 2a at distance h from the wall show that the lift increases as a/h increases; it is ultimately
independent of a and scales with the ratio of h to the hydrodynamic wavelength. Application is
made to determine the sound generated by the airfoil in a weakly compressible boundary layer
#ow over a "nite elastic plate. ( 2001 Academic Press
1. INTRODUCTION

THE AMPLITUDE OF THE SOUND produced by an airfoil in a turbulent stream is proportional to
unsteady lift when the Mach number is su$ciently small that the airfoil chord can be
regarded as acoustically compact (Curle 1955). This important limiting case was "rst
considered by Sears (1941), who modeled the turbulence as a &&gust'' in which the velocity
#uctuation is a small fraction of the mean stream velocity ;. Subsequent theoretical
analyses have made extensive use of this approximation. The papers by Amiet & Sears
(1970), Mugridge (1971), Widnall (1971), Filotas (1973), Goldstein & Atassi (1976), Howe
(1976), Atassi (1984), Glegg (1989) and Marshall & Grant (1996), are typical, but represent
a small fraction of the literature on this subject. The original work of Sears treated the airfoil
as an isolated, two-dimensional rigid plate at zero mean angle of attack. This approxima-
tion yields predictions for the unsteady lift that are often adequate in applications, although
re"nements involving the modi"cation of a turbulent eddy during convection past an airfoil
of "nite thickness, camber and angle of attack have also been considered [e.g. Goldstein
& Atassi (1976), Atassi (1984) and Howe (1989a)]. These corrections are often di$cult to
apply in practice, however, because of gross uncertainties in the detailed properties of the
impinging turbulent #ow.

The principal component of the sound generated during interactions at low Mach
number can be ascribed to an acoustic dipole whose strength is equal to the unsteady lift,
0889}9746/01/020207#19 $35.00/0 ( 2001 Academic Press



208 M. S. HOWE
and varies as;v, where v is a characteristic turbulence velocity. The dipole axis is normal to
the mean #ow direction, and the amplitude of the acoustic pressure is proportional to
o
0
v;M, where o

0
is the mean #uid density and M@1 is the mean #ow Mach number. The

strength of the lift #uctuations and the acoustic intensity can be signi"cantly modi"ed (for
constant turbulence in#ow) when the airfoil is close to a large surface. For example, the
unsteady lift is usually increased for a small airfoil deployed as a large-eddy break-up
device (LEBU) in a turbulent wall boundary layer. However, if the wall is rigid the
amplitude of the sound produced by the lift dipole at low Mach numbers is considerably
reduced by a factor &O(M);1, now varying as o

0
v;M2, because the lift dipole is

cancelled by an equal and opposite image dipole in the wall. The net reduced contribution
from these dipoles is comparable to the sound produced by the turbulence quadrupole
sources in the boundary layer (Lighthill 1952). In these circumstances, Dowling (1989) has
argued that the sound is dominated by the dipole radiation generated by the unsteady
airfoil drag, whose amplitude scales as o

0
v2M.

This conclusion, however, is strictly valid for a rigid wall. In practice, it is usually
permissible to regard the wall as rigid only when the dominant scales of the motions of
interest are comparable to the wall thickness, or smaller. This would be the case, for
example, for the &&hydrodynamic'' components of the disturbance produced by a LEBU.
However, the wavelength of the generated sound is typically of order d/M<d or larger
(where d is the boundary-layer thickness), and can greatly exceed the wall thickness.
Acoustic waves can then be strongly coupled to wall motions, and this can substantially
increase the e$ciency of their production by the LEBU to the extent that the amplitude of
the sound becomes comparable to that of a free-"eld dipole (&O (o

0
v;M)) over an

extensive range of frequencies (Howe 1989b). This is because the overall strength of the
image dipole is proportional to the &&re#ection coe$cient'' of the wall, which depends
on both the frequency and wavelength of the di!erent Fourier components of the motion
produced by the lift dipole; the rigid wall is a special and a typical case because the re#ection
coe$cient is always equal to !1 irrespective of the frequency and wavelength.

In this paper, we derive a general formula for the unsteady lift experienced by a rigid
airfoil placed within a wall turbulent boundary layer at very low Mach number. This
formula involves the vorticity and velocity distribution in the boundary layer and wake of
the airfoil and a harmonic function X

2
(solution of Laplace's equation) that depends on

airfoil shape. It is shown how the lift can be expressed as a surface integral over the airfoil
involving X

2
and the &&upwash'' velocity induced by the vorticity and its &&image'' distribu-

tion in the wall. The Sears formula for a two-dimensional, isolated airfoil and a two-
dimensional gust can be derived as a special case. The function X

2
is just equal to the

velocity potential of #ow past the airfoil produced by normal motion of the wall towards the
airfoil at unit speed. Particular attention is given to the case [not considered by Dowling
(1989) or Howe (1989b)] of an airfoil whose chord is large compared to both the boundary-
layer thickness and the stand-o! distance from the wall. This would be relevant, for
example, to problems involving the interaction of a shrouded rotor with a wall boundary
layer. Gebert & Atassi (1989) have given a numerical solution of this problem for arbitrary
stand-o! distance and a two-dimensional gust, but their predictions at large reduced
frequencies do not agree uniformly with the analytical result of this paper.

The general lift formula is discussed "rst for an isolated airfoil (Section 2) and then for an
airfoil adjacent to a wall (Section 3). A detailed analysis is given in Section 4 for a two-
dimensional, #at-plate airfoil. Application is made in Section 5 to determine the sound
produced by interaction of this airfoil with boundary-layer turbulence when the boundary-
layer thickness d is small compared to the airfoil chord, and when the adjacent wall is elastic
and of "nite length.



Figure 1. Isolated airfoil in a turbulent stream.
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2. THE ISOLATED AIRFOIL

2.1. GUST-INDUCED SURFACE FORCE

Consider an airfoil with surface S at rest in an incompressible turbulent stream in an
unbounded #uid of uniform mean density o

0
and shear coe$cient of viscosity g (Figure 1).

Let the mean #ow be in the negative x
1
-direction of the rectangular coordinates (x

1
, x

2
, x

3
),

with the x
2
-axis vertically &&upwards'', in the direction of the mean lift, and x

3
in the

span-wise direction. Newton's second law permits the unsteady force F
i
exerted on the

airfoil in the i-direction to be written,

F
i
"!

d

dt Po0
v
i
d3x#Q

&
pdS

i
, (2.1)

where v is the #uid velocity, p the pressure, and the volume integration is over the region of
#uid V bounded internally by S and externally by a large surface & that may be assumed to
convect with the #uid. The surface element dS

i
on & is directed into V.

The size of the integration region can be signi"cantly reduced, and the integral over
& eliminated, by using the momentum equation,

L(o
0
v)

Lt
#$Ap#

1

2
o
0
v2B"!o

0
X''v!g curlX , (2.2)

where X"curl v is the vorticity, to transform the right-hand side of equation (2.1) into a set
of equivalent integrals con"ned to the turbulent region (where XO0) and to the surface S.
To do this, we "rst de"ne the harmonic function

X
i
"x

i
!u*

i
(x), (2.3)

where u*
i
(x) is the velocity potential (solution of + 2u*

i
"0) of the ideal, incompressible #ow

that would be produced by rigid-body translational motion of S at unit speed in the
i-direction. Then $X

i
' n"0 on S, where n is the unit normal on S (directed into the #uid);

X
i
may therefore be interpreted as the velocity potential of ideal #ow past the "xed airfoil in

the i-direction, normalized to have unit speed at large distances from the airfoil.
Take the scalar product of $X

i
with equation (2.2), and integrate over the #uid. The

divergence theorem may now be applied [as described in detail by Howe (1989a)] to obtain
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an equation that expresses the right-hand side of equation (2.1) in terms of the following
integrals:

F
i
"o

0P$X
i
'X''vd3x!g Q

S

X''$X
i
' n dS . (2.4)

The volume integral represents the vector sum of the normal dynamic pressure force on S;
the surface integral is the net e!ect of surface frictional forces.

2.2. LIFT REPRESENTED IN TERMS OF THE UPWASH VELOCITY

The "nal representation in equation (2.4) can be further reduced at very high Reynolds
numbers to a single surface integral over S by introducing the &&upwash'' velocity induced by
the vorticity X. If B"p/o

0
#1

2
v2 (the total enthalpy), then the divergence of equation (2.2)

supplies (for an incompressible #uid)

+2B"!div (X''v) , (2.5)

from which B can be determined when the vorticity and velocity are known. Let B
I
denote

the particular solution of this equation that vanishes as DxDPR when the presence of the
airfoil is ignored (although the full e!ect of the airfoil in determining X and v is retained),
i.e., let

B
I
(x, t)"

1

4n
div P

(X''v)(y, t)

Dx!yD
d3y. (2.6)

Now, +2X
i
"0 in the #uid, and it therefore follows from Green's theorem that

Q
S
AXi

LB
I

Lx
n

!B
I

LX
i

Lx
n
BdS"PXi

div (X''v) d3x,!Q
S

X
i
(X''v)

n
dS!P$X

i
' (X''v) d3x,

where the subscript n for a vector quantity evaluated on S denotes the normal component
directed into the #uid. Because LX

i
/Lx

n
,0, this result may be rearranged into the form

P$X
i
' (X''v) d3x"!Q

S

X
iA

LB
I

Lx
n

#(X''v)
nBdS. (2.7)

The integrand on the right is transformed further by taking the gradient of equation (2.6)
and using the identities $ div"curl curl#+2 and +2(1/Dx!yD)"!4n d (x!y), to show
that

$B
I
#X''v"curl P

curl (X''v) (y, t)

4nDx!yD
d3y. (2.8)

This result is used to de"ne the upwash velocity v
I
by

Lv
I

Lt
"!curlP

curl (X''v) (y, t)

4nDx!yD
d3y. (2.9)

The limiting value of v
I
as the Reynolds number tends to in"nity corresponds to the induced

velocity of the &&free'' vorticity, i.e., the total vorticity excluding bound vorticity on the airfoil.
Indeed, by integration of the vorticity equation [the curl of equation (2.2)] we "nd

P
curl (X''v)

4nDx!yD
d3y"!PA

LX
Lt

!l+2XB
d3y

4nDx!yD
,
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where l"g/o
0
is the kinematic viscosity. At high Reynolds numbers the vorticity di!usion

term l+2X is negligible except within the viscous sublayer on the airfoil where, however, the
motion becomes linear and LX/Lt!l+2XP0. Equation (2.9) is then equivalent to the
Biot}Savart induction formula (Batchelor 1967)

v
I
(x, t)"curlP

Vd

X(y, t) d3y

4nDx!yD
, (2.10)

where the integration is con"ned to the region Vd occupied by the free vorticity outside the
viscous sublayer on the airfoil. The latter restriction con"rms that when the Reynolds
number is large enough that the motion is e!ectively inviscid except within an in"nitesimal
distance from the surface of airfoil, contributions to integral (2.10) from bound vorticity on
S must be ignored.

Equations (2.4) and (2.7) therefore permit the surface force to be expressed in the form

F
i
"o

0 Q
S

X
i

Lv
In

Lt
dS!g Q

S

X''$X
i
' n dS . (2.11)

In particular, when the Reynolds number is su$ciently large that frictional surface stresses
may be ignored, the unsteady lift force F

2
becomes

F
2
"o

0 Q
S

X
2

Lv
In

Lt
dS . (2.12)

2.3. GUST-INDUCED LIFT FOR A THIN PLATE AIRFOIL

Consider the special case illustrated in Figure 2 of a two-dimensional airfoil consisting of
a rigid strip of chord 2a set at zero angle of attack to the mean #ow. Let the airfoil occupy
!a(x

1
(a, x

2
"0, !R(x

3
(R, and suppose a small amplitude, two-dimensional

time harmonic gust of frequency u (proportional to e~*ut) is incident from upstream
(x

1
"#R). In the absence of the airfoil, and assuming that the gust is passively convected

along by the mean #ow, this would generate an upwash velocity in the plane x
2
"0 whose

&&vertical'' component is, say,

v
2
"v (u)e~*u(t`x1@U) , (2.13)

where v(u) may be regarded as known.
According to Sears (1941), the unsteady, high Reynolds number lift per unit span

F
2
(u)e~*ut produced by the gust is given by

F
2
(u)"2nao

0
v(u);SA

ua

; B, S (x)"
2

nx(H(1)
0

(x)#iH(1)
1

(x))
, (2.14)

where S is the Sears function, and H(1)
0

, H(1)
1

are Hankel functions (Abramowitz & Stegun
1970). The real and imaginary parts of S are plotted as the solid curves in Figure 2 as
functions of the reduced frequency ua/;.

In order to derive the Sears result (2.14) from the general formula (2.12) it is not su$cient
to take v

In
to be de"ned by the upwash velocity (2.13) induced by the gust, because the

interaction of the airfoil with the gust produces new vorticity shed into the wake. This
vorticity is necessary to ensure that the #ow leaves the trailing edge smoothly, in accordance
with the Kutta condition (Crighton 1985). But this also means that the overall importance
of the trailing edge region as a source of unsteady lift is signi"cantly diminished. Indeed,
when the reduced frequency ua/;'1, it is a very good approximation to assume that the



Figure 2. Comparison of the exact formula (2)14) (**) and the asymptotic formula (2)16) (!!!) for the lift on
a two-dimensional airfoil; f f f, ratio (in dB) of the corresponding mean square lift forces.
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net value of the total upwash velocity v
In

becomes negligible near the trailing edge, where the
component produced by the wake vorticity is e!ectively equal and opposite to component
(2.13) produced by the gust alone. Near the leading edge, however, the in#uence of the wake
is negligible, and v

In
can be approximated by equation (2.13).

Thus, for ua/;'1 the lift can be evaluated from equation (2.12) by taking v
In

to be given
by equation (2.13) and con"ning the integration to the region close to the leading edge. To
do this note "rst that (Batchelor 1967)

X
2
"Re (!iJz2!a2), where z"x

1
#ix

2
,

+Re(!iJ2aJz!a) near the leading edge. (2.15)

Then equation (2.12) is approximated as follows, by expanding the integrand about the
leading edge of the airfoil:

F
2
(u)"!iuo

0 Q
S

X
2
v
In
(u) dS+!2iuo

0P
a

~=

v (u)e~*ux1@UJ2a(a!x
1
) dx

1

"2nao
0
v (u);C

e*(n@4)~(ua@U)

J2n(ua/;)D . (2.16)

This should be compared with the exact formula (2.14). The quantity in the square brackets
in the last line of equation (2.16) replaces the Sears function of equation (2.14); it is readily
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con"rmed to be identical to the limiting value of S(ua/;) as ua/;PR. Its real and
imaginary parts are plotted as the broken line curves in Figure 2. Signi"cant di!erences
between the exact and approximate values are evident only for ua/;(1, and this con"rms
the hypothesis used in deriving equation (2.16) that, when ua/;'1, the role of vortex
shedding (i.e., of the Kutta condition) is to e!ectively reduce to zero the magnitude of the
upwash velocity near the trailing edge.

The dotted curve in the "gure represents the variation of

10]log
10 K 2n

ua

;
S2A

ua

; BK .
This represents on a dB-scale the di!erence between the exact and approximate values of
DF

2
(u)D2. The fact that the exact and approximate values of DF

2
(u)D2 di!er by less than 1

2
dB

when ua/;'1
2

implies that an error of the same magnitude will be incurred when the
approximate lift formula is used to estimate gust-generated aerodynamic sound at very low
Mach number for these reduced frequencies.

3. AIRFOIL IN A TURBULENT BOUNDARY LAYER

Consider next the case of an airfoil "xed within a wall boundary layer. Assume the airfoil,
the mean #ow, and the coordinate system to be orientated as in Section 2, with the addition
of a plane rigid wall, which is taken to coincide with the plane x

2
"0 (Figure 3).

The lift F
2

on the airfoil is given by

F
2
"!

d

dt Po0
v
2
d3x#Q

&
p dS

2
, (3.1)

where the volume integral is over the #uid region x
2
'0, and the surface integral now

includes a contribution from the wall x
2
"0 which gives the net normal force exerted on the

#uid by the wall.
The integrals in equation (3.1) can be transformed by the method of Section 2 to give

F
2
"o

0P $X
2 '

X''vd3x!g Q
S

X''$X
2 '

ndS, (3.2)
Figure 3. Airfoil in a plane-wall turbulent boundary layer.
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provided the harmonic function X
2
"x

2
!u*

2
(x) is modi"ed to satisfy

LX
2
/Lx

n
"0, on the airfoil S,

LX
2
/Lx

2
"1, on the wall x

2
"0.

(3.3)

X
2

is now equivalent to the velocity potential of the #ow past the "xed airfoil that would be
produced by motion of the wall at unit speed in the x

2
-direction. Equation (3.2) is formally

identical to the i"2 component of equation (2.4). A similar formula can be obtained for the
directions i"1, 3 parallel to the wall, with X

i
de"ned as in Section 2, but in these cases

F
i
would represent the force on the airfoil plus the skin friction on the wall (the surface

integral would then be taken over the airfoil and the wall).
Further reduction of equation (3.2) to the form (2.11) (with i"2) or equation (2.12)

involving the upwash velocity v
I
is achieved by introducing the following modi"cation to

de"nition (2.6) of B
I
:

B
I
(x, t)"

1

4n
divP

y2;0

(X''v) (y, t)

Dx!yD
d3y!U@ (x, t) , (3.4)

where U@ satis"es +2U@"0, U@P0 as DxDPR in x
2
'0, and is chosen to make LB

I
/Lx

2
"0

on the wall x
2
"0. The function U@ therefore corresponds to the potential #ow produced by

a system of image vortices in the wall. The high Reynolds number formula for the lift force
then becomes

F
2
"o

0 Q
S

X
2

Lv
In

Lt
dS , (3.5)

where

v
I
(x, t)"curlP

Vd

X(y, t) d3y

4nDx!yD
#$U(x, t), U(x, t)"P

t

~=

U@ (x, q) dq.

The upwash velocity therefore consists of the velocity induced (according to the Biot}Savart
law) by the free vorticity, together with a correction that corresponds to the potential #ow
velocity generated by the image of the turbulent stream in the wall. In other words, the
upwash velocity in the fully turbulent region of the boundary layer is precisely the velocity
that would be measured in the absence of the airfoil (but when its contributions to vorticity
production and convection are retained).

4. THE THIN PLATE AIRFOIL

Speci"c analytical results will next be derived for a thin plate airfoil of chord 2a adjacent to
a rigid wall. A case of practical importance arises when the airfoil is located in the outer
region of a boundary layer, at a stand-o! distance from the wall h+d"boundary-
layer thickness. The numerical results of Section 2.3 indicate that the lift #uctuations
at reduced frequencies ua/;'1 can be determined to an excellent approximation by
taking the upwash velocity to coincide with the velocity "eld of the boundary layer in the
absence of the airfoil, and by limiting the integration in the surface integral (3.5) to
the leading edge region (contributions from the trailing edge being suppressed by the
Kutta condition). If the airfoil is taken to occupy !a(x

1
(a, x

2
"h, !R(x

3
(R,

the potential function X
2
(x) must therefore be expanded about the leading edge x

1
"a,

x
2
"h, where it will exhibit a square root singularity of the same type as in equation

(2.15).
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4.1. EVALUATION OF X
2
(x)

An analytical approximation for X
2

was derived by Howe (1989a) for the case where a/h is
small. The calculation was based on the method described by Milne-Thomson (1968) for
determining the potential #ow generated by a moving sphere near a rigid wall. Let w(z) be
the complex potential of the motion produced when the wall advances towards the
stationary airfoil at unit speed, where z"x

1
#ix

2
. Then X

2
"Rew (z), and in the "rst

Milne-Thomson approximation

w+!iz#a M!iJ(z!ih)2!a2#iJ(z#ih)2!a2N, a;h, (4.1)

where a is a real coe$cient to be determined. The terms in the brace brackets, respectively,
correspond to the velocity potentials of #ow in the x

2
-direction past the airfoil when the

presence of the wall is ignored, and #ow in the opposite direction past the image of the airfoil
in the wall. This formula satis"es !Imdw/dz,LX

2
/Lx

2
"1 on the wall x

2
"0, but

LX
2
/Lx

n
O0 on S. In a "rst approximation, for a;h, the coe$cient a can be chosen to

make LX
2
/Lx

n
"$LX

2
/Lx

2
"0 along the axis of symmetry z"i (h$0) of the airfoil, when

it is found that

a"f
1A

a

hB,S1#
a2

4h2
,

a

h
;1.

(4.2)

Alternatively, a can be estimated by requiring that the average value

1

2aP
a

~a

LX
2

Lx
2

dx
1
"0 on S.

This yields

a"f
2A

a

hB,
1

J2A1#S1#
a2

h2B
1@2

,
a

h
;1. (4.3)

In either case, the behavior of X
2

near the leading edge (z"a#ih) is found to be
given by

X
2
+fA

a

hBRe M!iJ2aJz!(a#ih)N , (4.4)

where f+f
1
, f

2
when a/h is small. The functions f

1
, f

2
are shown plotted against a/h in

Figure 4 (the broken-line curves).
A more precise evaluation of X

2
and f (a/h) is necessary when the airfoil chord is much

larger than the stand-o! distance h. This can be accomplished by means of the conformal
transformation illustrated in Figure 5, where [Figure 5(a)] it is required to determine the
velocity potential X

2
,X

2
(z) (z"x

1
#ix

2
) when the wall advances towards the airfoil at

unit speed. The #uid motion is evidently symmetric with respect to the x
2
-axis, and the

problem of calculating the ideal #ow in the "rst quadrant of the z-plane (x
1
'0) is

equivalent to that depicted in Figure 5(b), where the imaginary axis is replaced by a rigid
barrier and a line source of unit strength per unit length is distributed along the positive real
axis (0(x

1
(R) between O and C

=
. The lower and upper surfaces of the &&positive'' half of

the airfoil are denoted, respectively, by BA and DA.
The complex potential w(z) of the #ow produced by the line source is found by mapping

the "rst quadrant of the z-plane, cut along the segment between z"ih and z"a#ih
occupied by the positive half of the airfoil, onto the second quadrant of the f-plane by means



Figure 4. Plots of f (a/h) and the small argument approximations f
1
, f

2
.
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of the Schwarz}Christo!el transformation (Lamb 1932; Milne-Thomson 1968; Ivanov
& Trubetskov 1995)

z

h
"

!i ME(f, %)!sF(f, %)N
E (%)!sK (%)

, (4.5)

where

s"1!
E (%@)
K(%@)

, %@"1!%, 04%(1.

F(f, %), E(f, %) are elliptic integrals of the "rst and second kind, respectively (Abramowitz
& Stegun 1970):

F(f, %)"P
f

0

dt

J1!t2J1!%t2
, E (f, %)"P

f

0

J1!%t2dt

J1!t2
, Im f50 (4.6)

and K(%)"F(1, %), E(%)"E (1, %) are the corresponding complete elliptic integrals.
The images in the f-plane of the points labeled in Figure 5(b) are shown in Figure 5(c) and

listed in Table 1.



Figure 5. (a) Calculation of X
2

for arbitrary values of a/h; (b) unit strength line source and rigid barrier used to
determine X

2
in the "rst quadrant; (c) images in the f-plane.

TABLE 1

Point Image in f-plane

C
=

#iR on the imaginary axis
B !1
A !f

A
, where f

A
"JE(%@)/%K (%@)

D !1/J%
E
=

!R on the real axis
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The condition that f"!f
A

should be the image of the airfoil leading edge z"a#ih
yields the relation

a

h
"

1

[E(%)!sK(%)]P
fA

1

(1!%t2!s) dt

J(t2!1)(1!%t2)
, (4.7)

which determines the value of the parameter % in terms of a/h.
The uniform source density of unit strength along the positive real axis in the z-plane

maps into a source distribution of density

h

E (%)!sK(%) AS
1#%j2
1#j2

!

s

J(1#j2) (1#%j2)B
on the positive imaginary axis Im f"j. The velocity potential in Re f(0, Im f'0 is
therefore given by

w"

h

n[E(%)!sK(%)]P
=

0

(1#%j2!s) ln (f2#j2) dj

J(1#j2) (1#%j2)
. (4.8)

This integral is formally divergent because it includes an &&in"nite constant'', but its
derivative dw/df converges and correctly determines $X

2
in the region x

1
, x

2
'0.

It follows by expanding about f"!f
A
, that the behavior of X

2
"Rew (z) near the

leading edge A is given by the general formula (4.4), where

fA
a

hB"
1

nS
h

aC
2s1@2f

A
Jf2

A
!1

%[E(%)!sK(%)]D
1@2

P
=

0

(1#%j2!s)

J(1#j2)(1#%j2)

dj
(f2

A
#j2)

. (4.9)

The right-hand side of this formula is a function of a/h alone, because % is given in terms of

a/h by equation (4.7), and f
A
"JE(%@)/%K(%@). However, the integrals in equations (4.7)

and (4.9) must be evaluated numerically, and it is therefore convenient "rst to calculate the
respective parametric dependencies of f (a/h) and a/h on %. The solid curve in Figure 4 is the
plot of f (a/h) against a/h obtained in this way.

Large values of a/h correspond to %P0; equations (4.7) and (4.9) can then be used to
show that

fA
a

hB&S
a

nh
as

a

h
PR. (4.10)

However, this asymptotic dependence is approached only when a/h is much larger than the
maximum value occurring in Figure 4. For practical purposes the following modi"cation of
the small a/h formula (4.3) provides an excellent representation of f (a/h) for a/h410:

fA
a

hB+
1

J2C1#A1#
(a/h)2

1#0)13(a/h)!0)0045(a/h)2B
1@2

D
1@2

, 04
a

h
410. (4.11)

4.2. THE UNSTEADY LIFT

When the characteristic scale of the upwash velocity is small compared to the airfoil chord,
the main contribution to the lift force integral of equation (3.5) is from the neighborhood of
the leading edge of the airfoil, where X

2
is given by equation (4.4). The leading edge

singularity is the same as in equation (2.15) for the isolated airfoil (the leading edge being at
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z"a in Section 2). Thus, the factor f (a/h) is equal to the ratio of the boundary-layer-
induced lift force to the lift produced by the same impinging upwash velocity in the absence
of the wall.

For the particular case of the two-dimensional, time-harmonic upwash velocity (2.13),
where ua/;'1, the lift is calculated as in equation (2.16) of Section 2.3, leading to

F
2
(u)"!iuo

0 Q
S

X
2
v
In
(u) dS+2nao

0
v(u);fA

a

hBC
e*(n@4~ua@U)

J2n(ua/;)D . (4.12)

When a/h is small, f&1, and this is identical with the result (2.16) for an isolated airfoil, for
which DF

2
/2ao

0
v;D2&1/ia, (i"u/;). Figure 4 shows how the magnitude of the lift

increases (for "xed v (u) and ia) as a/h increases. When a/h is very large f&Ja/nh and
DF

2
/2ao

0
v;D2&1/ih, i.e., the relevant length scale determining the decrease in the lift force

with increasing gust wavenumber i is ultimately equal to the stand-o! distance h rather
than the airfoil chord. This conclusion is at variance with that of Gebert & Atassi [1989,
equation (28)]. They "nd the lift to be independent of h and equal to that for an isolated
airfoil for all values of a/h when ia<1, apparently because it was assumed that large values
of ia also implies that ih<1. But this is only true provided that h/a is not small. Thus, the
amplitude of our high-frequency prediction exceeds that of Gebert & Atassi (1989) by the
factor f (a/h) plotted in Figure 4.

5. SOUND GENERATED BY LIFT FLUCTUATIONS

In #ow at very low Mach number the sound attributable to an airfoil in a turbulent
boundary layer is governed by the following compressible version of equation (2.5) (Howe
1998):

A
1

c2
0

L2
Lt2

!+ 2BB"div (X''v) , (5.1)

where c
0
denotes the speed of sound. At large distances from the airfoil, in the acoustic far

"eld, the acoustic pressure p+o
0
B, where B is the perturbation value of the total enthalpy

determined by equation (5.1). The turbulence source on the right of equation (5.1) produces
an unsteady lift on the airfoil that is equivalent to an acoustic dipole. If the airfoil is adjacent
to a large rigid wall, an equal and opposite image dipole is also created in the wall, and the
overall radiation is equivalent to that produced by a much weaker quadrupole (see
Section 1). However, a real elastic wall can be highly compliant at the large length scales
associated with acoustic waves (especially in water), even though its behavior is e!ectively
rigid on a scale of the hydrodynamic components of the motion. In other words, the
hydrodynamic motion produced by the airfoil is typically identical to that for a rigid wall,
while the wall is compliant over longer distances comparable to the acoustic wavelength.
This suggests that to calculate the radiation, the force exerted on the wall should "rst be
determined as if the motion were incompressible and the wall rigid; the acoustic "eld
produced by this force is then found by including the in#uence of wall-compliance.
However, to avoid any possible misunderstanding, we shall adopt the alternative procedure
of "rst calculating the Green's function describing the radiation from sources in the
neighborhood of the airfoil. A problem of this type is discussed by Howe (1989b) when the
wall consists of an in"nite elastic plate. Here we shall consider the situation illustrated in
Figure 6(a), in which a two-dimensional airfoil is "xed in a boundary layer #ow over
a two-dimensional elastic plate of width 2l<2a, and where the Mach number M";/c

0
is

su$ciently small that the dominant acoustic wavelengths are large compared to l.



Figure 6. (a) Airfoil adjacent to a large, two-dimensional elastic plate of width 2l in the presence of a turbulent
boundary layer #ow; (b) coordinate system used to specify the position x of an observer in the acoustic far "eld.
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5.1. THE ACOUSTIC GREEN'S FUNCTION

In these circumstances Green's function G for the acoustic problem can readily be derived
for each frequency component (proportional to e~*ut) of the radiation. If +2y is the Laplacian
with respect to y, and the observer is at x in the acoustic far "eld [see Figure 6(b)],
G"G(x, y, u) may be regarded as the velocity potential determined as a function of y by
the reciprocal problem

(+2y#k2
0
)G"d(y!x) , (5.2)

in which the spherical wave

G
0
"

!e*k0Dy~xD

4nDy!xD
(5.3)

generated by the point source at x [on the right of equation (5.2)] is di!racted by the elastic
plate and by the airfoil.

To calculate G near the plate it is necessary to determine the motion of the plate produced
by this spherical wave. In a "rst approximation (for a;l), we can neglect the in#uence of
the airfoil in calculating the plate motion. Thus, ignoring for the moment the presence of the
airfoil, we write

G"G
0
#G

4
, (5.4)
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where G
4
denotes the "eld di!racted by the plate. Near the plate

G
0
+A(1!ik

0
y
2
cosH), A"

!e*k0DxD~*k3y3

4nDxD
, DxDPR, k

0
y
2
;1, (5.5)

where k
3
"k

0
cos t; the angles t, H de"ne the orientation of the observer direction x, and

coordinate axes are taken as in Figure 6(b), with the origin O on the centerline of the plate.
To determine the corresponding approximation for G

4
near the plate, note that the

motion of the plate produced by the incident wave G
0
must be independent of y

1
when k

0
l is

small, i.e., its normal velocity V"V(y
3
) is a function only of the span-wise coordinate y

3
.

At large distances from the plate G
4
must therefore represent the "eld of an outgoing line

dipole, proportional to

H(1)
1

(k1
0
r) sin he~*k3y3, k1

0
"Jk2

0
!k2

3
"k

0
sin t,

where (r, h) are polar coordinates, de"ned such that (y
1
, y

2
)"r (cos h, sin h). The lowest-

order terms in the small argument expansion of the Hankel function are local solutions of
Laplace's equation, and we can accordingly write, in the immediate vicinity of the plate,

G
s
+!iAk

0
cos HRe(!iJz2!l2#iz)

#VRe(iJz2!l2!iz)#
in (k1

0
l)2

8
VRe(iJz2!l2), z"y

1
#iy

2
. (5.6)

The combination of the "rst term on the right of equation (5.6) with the incident wave
represents a disturbance whose normal velocity vanishes on the plate. The second term
represents the local incompressible motion produced by the oscillatory motion of the plate
at normal velocity V, and the "nal term (which di!ers in phase by 903) represents the
leading order near-"eld term involving #uid compressibility. The latter governs the in#u-
ence of radiation damping on the motion of the plate, and is required to ensure that
V remains "nite when the plate is excited at the coincidence frequency (Junger & Feit 1993).

If D and m, respectively, denote the bending sti!ness and mass per unit area of the plate,
V satis"es the bending wave equation

AD
d4

dy4
3

!mu2BV"!iuP
l

~l

[p (y
1
, !0, y

3
)!p(y

1
, #0, y

3
)] dy

1
, (5.7)

where the pressure is given by the linearized relation p"iuo
0
(G

0
#G

4
), and the pressure

loading is therefore calculated from equation (5.6) to be

p(y
1
, !0, y

3
)!p(y

1
, #0, y

3
)"!2o

0
uGAk

0
cosH!iVA1#

in(k
0
l sint)2

8 BHJl2!y2
1
.

Because AJe~*k3y3"e~*k0y3#04t, it now follows from equation (5.7) that

V"

i (no
0
l/2m)Ak

0
cosH

Dk4
0
cos 4t/mu2!(1#no

0
l/2m[1#in(k

0
l sint)2/8])

,

"

ibAk
0
cosH

(1!ik)u2 cos4t/u2
#
!(1#b[1#in(k

0
l sint)2/8])

. (5.8)

Here a complex sti!ness D"D
0
(1!ik) has been introduced, where D

0
is real and k;1 is

a suitable loss factor; also u
c
"c2

0
Jm/D

0
is the coincidence frequency of the plate, and

b"o
0
nl/2m is the ratio of the added mass to the mass of the plate.
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The periodic motion of the plate at speed V produces a locally incompressible motion of
#uid past the stationary airfoil in the y

2
-direction. At source positions y near the airfoil we

can therefore write, to leading order,

G(x, y, u)+G@
0
#VX

2
(y) , (5.9)

where X
2
(y) is the potential function discussed in Section 3 that satis"es conditions (3.3) on

the airfoil and plate, and G@
0
&G

0
is smoothly varying near the airfoil,

The term in X
2

in equation (5.9) governs the sound produced by the interaction of the
airfoil with boundary-layer turbulence in the presence of the elastic plate; contributions to
the radiation from the component G@

0
, whose length scale of variation is large compared to

the airfoil chord, will tend to be of lower, quadrupole order, and may be ignored at very low
Mach numbers. Thus, for the purpose of computing the sound generated by small-scale
turbulence interacting with the airfoil, we can take (using de"nition (5.5) of A)

G(x, y, u)+
!ibk

0
X

2
(y) cosHe*k0(DxD~y3#04t)

4nDxDM(1!ik)u2 cos4t/u2
#
!(1#b[1#in(k

0
l sint)2/8])N

, DxDPR.

(5.10)

5.2. THE ACOUSTIC SPECTRUM

Consider now the production of sound by turbulence impinging on an airfoil modeled by
the two-dimensional strip of Figure 5(a). The solution B (x, u) of the time harmonic form of
equation (5.1),

(+2#k2
0
)B"!div(X''v)(x, u) (5.11)

and Green's function G(x, u) satisfy the same linear boundary conditions on the airfoil and
plate. Green's theorem therefore supplies, by the usual procedure [see, e.g. Howe 1998], the
representation

B(x, u)"P
LG(x, y, u)

Ly
' (X''v)(y, u) d3y.

In the far "eld the acoustic pressure p"o
0
B, so that in the low-frequency regime where

equation (5.10) is applicable we have

p(x, u)+
!io

0
bk

0
cosHe*k0DxD

4nDxDM(1!ik)u2 cos4t/u2
#
!(1#b[1#in(k

0
l sint)2/8])N

]P($X
2 '

X''v)(y, u)e~*k0y3 #04 td3y. (5.12)

To evaluate the integral we note "rst that, for acoustically compact turbulent sources, the
argument of the exponential in the integrand is e!ectively constant over distances of order
;/u, the correlation scale of the turbulence #uctuations of frequency u. This means that
the incompressible equation (3.5) can be applied locally to express the sound in terms of the
upwash velocity. When the chord 2a<d the upwash velocity can be approximated by the
component v

2
of the impinging boundary-layer velocity #uctuations, which can be repre-

sented as the Fourier integral

v
2
(x

1
, x

3
, u)"PP

=

~=

v(
2
(i

1
, i

3
, u)e*(i1y1`i3y3) di

1
di

3
, (5.13)
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where both the velocity and its Fourier transform v(
2
(i

1
, i

3
, u) are regarded as evaluated at

the airfoil stand-o! distance h from the plate. We then "nd, by the procedure leading to
equations (2.16) and (4.12), that the acoustic pressure can be written

p (x, u)+
o
0
bu2J2na cosHe*(k0DxD`n@4 )

2c
0
DxDM(1!ik)u2 cos4t/u2

#
!(1#b[1#in (k

0
l sin t)2/8])N

]f A
a

hBP
=

~=

v(
2
(i

1
, k

0
cost, u)e*i1a di

1
(i

1
!i0)3@2

, DxDPR. (5.14)

Now, let W (i
1
, i

2
, u) denote the wavenumber}frequency spectrum of the upwash velo-

city v
2

(at x
2
"h), and introduce the frequency spectrum U(x, u) of the acoustic pressure at

the far-"eld observation point x, de"ned such that

Sp2 (x, t)T"P
=

~=

U (x, u) du,

where the angle brackets ST represent an ensemble average. Then

Sp(x, u)p*(x, u@)T"d (u!u@)U(x, u) ,

Sv(
2
(i

1
, k

3
, u)v( *

2
(i@

1
, k

3
, u@)T"

¸

2n
d(u!u@)d(i

1
!i@

1
)W (i

1
, k

3
, u), (5.15)

where the asterisk denotes the complex conjugate, and ¸<d is the spanwise extent of the
turbulent #ow. Hence,

U(x, u)+A
¸a

4c2
0
DxD2B

o2
0
b2f 2 u4 cos2 H

M(u2 cos4 t/u2
c
!(1#b))2#u4/u4

c
(k cos4 t#nbu2

c
l2 sin2t/8c2

0
)2N

]P
=

~=

W(i
1
, k

0
cost, u) di

1
Di

1
D3

DxDPR, (5.16)

where f,f (a/h).

5.3. APPROXIMATE REPRESENTATION OF THE SOUND

By analogy with the boundary-layer wall pressure spectrum (Chase 1980), the velocity
spectrum W(i

1
, i

3
, u) is expected to have a large peak in the vicinity of a &&convective ridge''

centered on i
1
&u/;

c
, i

3
&0, where ;

c
&0)7; is an eddy convection velocity. Also,

because k
0
d;1 we can take W (i

1
, k

0
cos t, u)"W (i

1
, 0, u). Thus, in a "rst approximation

P
=

~=

W (i
1
, k

0
cost, u) di

1
Di

1
D3

&

l
3
U

22
(u)

(u/;
c
)3

,

where U
22

(u) is the frequency spectrum of the normal velocity v
2
at distance h from the wall,

and l
3
":=

0
R

22
(y

3
, u) dy

3
is the spanwise x

2
-velocity correlation length at frequency u,

R
22

(y
3
, u) being the spanwise correlation function normalized such that R

22
(0, u)"1.

Equation (5.16) can therefore be approximated by

U(x, u)+A
¸a

4 DxD2B
o2
0
;2

c
M2

c
b2f 2 cos 2H(ul

3
/;

c
)U

22
(u)

M(u2 cos4t/u2
c
!(1#b))2#u4/u4

c
(k cos4t#nbu2

c
l2 sin2 t/8c2

0
)2N

DxDPR, (5.17)

where M
c
";

c
/c

0
.
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In applications it will usually be permissible to simplify this result further, because the
assumption that the plate width 2l is smaller than an acoustic wavelength is generally valid
only for u;u

c
. For example, in the case of a steel plate in water of thickness D;l, the

coincidence frequency satis"es u
c
D/c

0
+0)95, so that

u
u

c

"A
ul

c
0
BA

c
0

u
c
DB

D

l
;1.

Equation (5.17) therefore reduces to

U (x, u)+A
¸a cos2H

4 DxD2 B
b2f 2

(1#b)2
o2
0
;2

c
M2

c A
ul

3
;
c
BU

22
(u), DxDPR. (5.18)

Furthermore, the transverse correlation length l
3
&;/u (Chase 1980), so that ul

3
/;

c
probably varies very slowly with frequency. Equation (5.18) accordingly suggests that the
acoustic pressure frequency spectrum U(x, u)JU

22
(u), the frequency spectrum of the

normal component of velocity in the boundary layer at the airfoil stand-o! distance h.
When b<1 the inertia of the plate is negligible in the acoustic domain, and equation (5.18)
then reduces to the corresponding prediction for an isolated airfoil, except for the correction
factor f (a/h) that governs the in#uence of the plate on the airfoil lift force.

6. CONCLUSION

The unsteady surface force F
i
exerted on a stationary rigid body immersed in an incom-

pressible turbulent stream can be expressed in terms of a surface integral over the body
involving the upwash velocity induced by the free vorticity X and a harmonic function
X

i
that depends only on the shape of the body. The upwash velocity is calculated using the

Biot}Savart formula for the velocity induced by X when the presence of the body is ignored,
although X must "rst be found by taking explicit account of the interaction of the body with
the turbulent stream. The function X

i
may be interpreted as the velocity potential of

incompressible #ow past the body that has unit speed in the i-direction at large distances
from the body. For wall turbulent boundary layer #ows, the unsteady lift experienced by
a body in the x

2
-direction normal to the wall is given by the same formula provided X

2
is

rede"ned to represent potential #ow past the body produced by motion of the wall at unit
speed towards the body, and provided the Biot}Savart velocity "eld is augmented by the
velocity induced by a distribution of image vorticity in the wall.

For slender, airfoil-shaped bodies, when the turbulence length scales are small compared
to the streamwise extent of the body (such as the airfoil chord), vortex shedding into the
wake (in accordance with some sort of Kutta condition) tends to reduce the magnitude of
the upwash #uctuations in trailing edge regions. The main contributions to the surface
integral for the force then come from the nose regions, where the upwash velocity may be
approximated by the undisturbed velocity of the impinging turbulent #ow. Analytical
results based on this approximation for a thin plate airfoil of chord 2a in a boundary layer
at distance h from the wall show that the amplitude of the lift force increases as a/h increases,
and that ultimately the force becomes independent of a and scales with the ratio of h to the
hydrodynamic wavelength. The lift force on an isolated airfoil in a very low Mach number
#ow is equivalent to a relatively strong acoustic source of dipole type. The dipole strength is
reduced to zero if the airfoil is placed in a boundary layer over a rigid wall. However, a real
wall often becomes compliant over length scales comparable to the characteristic acoustic
wavelength, so that in practice the dipole remains "nite; a typical case of this kind has been
discussed in Section 5.
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